Pyramid Codes: Flexible Schemes to Trade Space for Access
Efficiency in Reliable Data Storage Systems

CHENG HUANG, Microsoft Research
MINGHUA CHEN, Chinese University of Hong Kong
JIN LI, Microsoft Research

We design flexible schemes to explore the tradeoffs between storage space and access efficiency in reliable
data storage systems. Aiming at this goal, two new classes of erasure-resilient codes are introduced — Basic
Pyramid Codes (BPC) and Generalized Pyramid Codes (GPC). Both schemes require slightly more storage
space than conventional schemes, but significantly improve the critical performance of read during failures
and unavailability.

As a by-product, we establish a necessary matching condition to characterize the limit of failure recovery,
that is, unless the matching condition is satisfied, a failure case is impossible to recover. In addition, we
define a maximally recoverable (MR) property. For all ERC schemes holding the MR property, the matching
condition becomes sufficient, that is, all failure cases satisfying the matching condition are indeed recover-
able. We show that GPC is the first class of non-MDS schemes holding the MR property.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems—
Reliability, availability, and serviceability; E.4 [Data]: Coding and Information Theory; E.5 [Data]: Files—
Backupl/recovery

General Terms: Design, Algorithms, Performance, Reliability

Additional Key Words and Phrases: Storage, erasure codes, reconstruction, fault tolerance

ACM Reference Format:

Huang, C., Chen, M., and Li, J. 2013. Pyramid codes: Flexible schemes to trade space for access efficiency in

reliable data storage systems. ACM Trans. Storage 9, 1, Article 3 (March 2013), 28 pages.
DOI:http://dx.doi.org/10.1145/2435204.2435207

1. INTRODUCTION

A promising direction in building large-scale storage systems is to harness the collec-
tive storage capacity of massive commodity computers. While many systems demand
high reliability (such as eleven 9s), individual components can rarely live up to that
standard. For example, a recent study [Schroeder and Gibson 2007] shows that the
real-world reliability of disk drives is far lower than expected.

On the other hand, large-scale production systems (e.g., Google File System
[Ghemawat et al. 2003], Hadoop [Shvachko et al. 2010], and Windows Azure Storage
[Calder et al. 2011]) have successfully demonstrated the feasibility of building reliable

M. Chen’s research is partially supported by the China 973 Program (Project 2012CB315904), the General
Research Fund (Projects 411209, 411010, and 411011) and an Area of Excellence Grant (Project AoE/E-
02/08), all established under the University Grant Committee of the Hong Kong SAR, China, as well as an
Open Project of Shenzhen Key Lab of Cloud Computing Technology and Application, and two gift grants
from Microsoft and Cisco.

Authors’ addresses: C. Huang (corresponding author) and J. Li, Microsoft Research; email:
cheng.huang@microsoft.com; M. Chen, Chinese University of Hong Kong.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 1553-3077/2013/03-ART3 $15.00

DOI:http://dx.doi.org/10.1145/2435204.2435207

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:2 C. Huang et al.

data storage systems using much less reliable commodity components. These systems
often use replication schemes to ensure reliability, where each data block is replicated
a few times. Trivial as it seems, there are sound reasons for such a choice. The
simplicity of design, implementation, and verification is perhaps the most important
one. In addition, replication schemes demonstrate good I/O performance. For instance,
in a 3-replication scheme (each data block is stored with 2 additional replicas), writing
a data block takes 3 write operations (1 write to itself and 2 to its replicas) and reading
simply takes 1 read operation (from the original data block or either of the replicas).

On the downside, replication schemes consume several times more storage spaces
than the data collection itself. In data centers, storage overhead directly translates
into costs in hardware (disk drives and associated machines), as well as costs to op-
erate systems, which include building space, power, cooling, and maintenance. As a
matter of fact, it is reported that over 55% of the cost of Microsoft Windows Live data
center is due to building, power distribution and equipment [Hamilton 2007]. In wide-
area peer-to-peer storage systems, as many as 24 replicas are required to achieve only
modest reliability [Grolimund 2007], which makes replication schemes prohibitively
expensive.

To that end, erasure resilient coding (ERC)-based schemes are proposed to reduce
storage overhead without compromising reliability. The most common ERC scheme
applies systematic MDS codes [MacWilliams and Sloane 1977], where a mathematical
transform maps %k data blocks into n total blocks (& original data blocks and n — &
redundant blocks). When blocks fail, as long as there are no more than n — & failures,
failed blocks can be recovered using remaining data and redundant blocks (imaginably,
via the inverse of the mathematical transform). Such an ERC scheme is often called
a (n,k)-MDS scheme. The storage saving of an MDS scheme is superior. For instance,
compared to 3-replication, a (9, 6)-MDS scheme can reduce storage overhead from 3x
to 1.5x, a 50% saving!

The adoption of ERC schemes in large-scale production systems, however, faces two
fundamental performance obstacles. First, the complexity and cost of update is high.
In the (9, 6)-MDS scheme, in-place updating a data block requires 8 read/write oper-
ations — 1 read of the data block itself to compute the bit-wise difference between old
and new data (called delta), 1 write to update the block, 3 reads of the 3 redundant
blocks to compute deltas, and then 3 writes to update the redundant blocks [Aguilera
et al. 2005; Saito et al. 2004]). In contrast, update a data block in 3-replication systems
requires three writes. Second, the performance of data access may suffer as well. In
systematic ERC schemes, the original data is preserved in the & data blocks. Hence, a
read operation, which accesses a certain byte range of data, can be directed to the data
block containing the target range. There is no penalty in such data access. However,
if the target data block is unavailable, the read operation has to access the remaining
blocks and perform the inverse of the mathematical transform to reconstruct the miss-
ing data. For instance, in the (9, 6)-MDS scheme, reconstructing 1 data block requires
reading from 6 data and redundant blocks. Clearly, reconstruction incurs penalty due
to more disk I/O and network traffic.

The first obstacle is well-addressed in today’s production storage systems (such as
Hadoop, GF'S, and WAS). These systems have been successfully built on top of append-
only storage, where write operations only append to the end of existing data and data
is never modified once written. Updates are appended as new data in the systems and
lazily consolidated as background jobs. Such systems provide a perfect opportunity to
implement ERC schemes because in-place update is completely avoided.

The second obstacle, unfortunately, has not been adequately examined. Due to the
scale of the production storage systems, component failures and transient unavailabil-
ity are no longer rare events, but happen rather regularly [Ford et al. 2010]. Data

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:3

access during failures and unavailability now impacts SLAs directly. The focus of this
work is to address this critical problem and improve the performance of data access
during failures and unavailability.

Our key idea is inspired by the drastic gap between replication and MDS-based
ERC. The storage overhead of 3-replication is as high as 3x, but reconstruction
requires merely 1 block. On the other hand, the storage overhead of the (9, 6)-MDS
scheme is low at 1.5x, but reconstruction requires as many as 6 blocks. If replication
and MDS-based ERC are regarded as two extremes of the tradeoffs between storage
space and access efficiency, is it possible to design schemes to explore the middle
ground? We provide an affirmative answer through this work. Our contributions are as
follows.

— We design two new ERC schemes: basic pyramid codes (BPC) and generalized pyra-
mid codes (GPC). Both schemes require slightly more storage space than MDS-based
ERC, but significantly improve the performance of reconstruction. For instance, com-
pared to MDS-based ERC, pyramid codes reduce reconstruction read cost by 50%
with merely 11% additional storage overhead.

— As a by-product, we establish a necessary matching condition to characterize the
limit of failure recovery, that is, unless the matching condition is satisfied, a failure
case is impossible to recover. In addition, we define a maximally recoverable (MR)
property. For all ERC schemes holding the MR property, the matching condition
becomes sufficient, that is, all failure cases satisfying the matching condition are
indeed recoverable. We show that GPC is the first class of non-MDS schemes holding
the MR property.

Since first published as conference papers in 2007 [Chen et al. 2007; Huang et al.
2007], BPC has been implemented in archival storage systems [Wildani et al. 2009].
GPC and the MR property have inspired the design of new classes of codes, such as
(r,d)-codes [Gopalan et al. 2011] and local reconstruction codes (LRC) [Huang et al.
2012]. In particular, LRC has been implemented in Windows Azure Storage, saving
the Microsoft cloud millions of dollars [Gantenbein 2012].

2. RELATED WORK
2.1. Erasure Coding in Storage Systems

Erasure coding has long been applied in storage systems, from earlier disk arrays
[Chen et al. 1994] to later wide-area storage system, such as OceanStore [Kubiatowicz
et al. 2000; Rhea et al. 2003]; Free Haven [Dingledine et al. 2000]; PAST [Rowstron
and Druschel 2001]; and local distributed cluster-based storage, such as Intermemory
[Chen et al. 1999]; PASIS [Wylie et al. 2000]; Myraid [Chang et al. 2002]; Glacier
[Haeberlen et al. 2005]; Ursa Minor [Abd-El-Malek et al. 2005]; Panasas Parallel F'S
[Welch et al. 2008]; and HydraStor [Dubnicki et al. 2009; Ungureanu et al. 2010]. The
advantages of erasure coding over simple replication are two-fold. It can achieve much
higher reliability with the same storage. Also, it requires much lower storage for the
same reliability [Weatherspoon and Kubiatowics 2001]. More recently, erasure coding
is also making its way into planet-scale cloud storage systems, such as HDFS-RAID in
Facebook [Borthakur et al. 2010] and Google Colossus [Fikes 2010].

Nevertheless, the existing systems do not explore alternative erasure coding design
other than MDS codes [MacWilliams and Sloane 1977; Reed and Solomon 1960] or
simple combination of different RAID modes [Chen et al. 1994]. Pyramid Codes are
non-MDS, and allow much more flexible tradeoff between storage space and access
efficiency than MDS codes.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:4 C. Huang et al.

2.2. Erasure Code Design

Besides pyramid codes, there are a few other non-MDS coding schemes, such as LDPC
codes [Gallager 1963; Luby et al. 2001; Maymounkov and Mazieres 2003]; Weaver
codes [Hafner 2005]; flat XOR codes [Greenan et al. 2008, 2010] and simple regen-
erating codes [Papailiopoulos et al. 2012], which improve repair and reconstruction
read performance over MDS codes. LDPC codes [Gallager 1963; Luby et al. 2001;
Maymounkov and Mazieres 2003] achieve comparable reliability as MDS codes when
either the number of data fragments or parity fragments is relatively large (in the
order of hundreds). Pyramid codes target much smaller coding groups with just a few
redundant blocks. Weaver codes [Hafner 2005] are very efficient, but unfortunately
require high storage overhead (2x and above). Pyramid codes target much lower
storage overhead. The storage cost of both stepped combination codes [Greenan et al.
2010] and simple regenerating codes [Papailiopoulos et al. 2012] is below 2x, but still
higher than than pyramid codes. In addition, none of the above codes achieves the
recoverability limit (Section 4).

To improve reconstruction performance, pyramid codes in general read fewer blocks
than a comparable MDS code. A promising alternative is instead to read from more
blocks, but less data from each. Regenerating codes [Dimakis et al. 2010] explore this
direction. Finding coding coefficients for regenerating codes is still an active and open
research topic. The best general results known today require splitting blocks stored
on individual nodes into an exponential number of pieces [Cadambe et al. 2011; Wang
et al. 2011], and are not yet practical. On the other hand, the best practical codes
known today are only available at limited options, such as at a storage overhead of
2x (and more) [Suh and Ramchandran 2011] or exactly 1.5x [Cadambe et al. 2011],
whereas pyramid codes are flexible and can be constructed for arbitrary storage
overhead.

Instead of searching for regenerating codes, other studies explore the same direction,
but focusing on optimizing existing codes [Khan et al. 2011, 2012; Xiang et al. 2010].
These works modify only decoding algorithms and not the erasure codes themselves.
The savings of these schemes are typically around 20%-30% [Khan et al. 2011, 2012;
Xiang et al. 2010], much less than pyramid codes.

2.3. Computation Complexity

There is a plethora of studies focusing on minimizing the computational complexity
of encoding and decoding operations. XOR-based array codes replace finite field com-
putation with less computationally expensive XOR operations [Blaum and Roth 1999;
Blaum et al. 1995; Blomer et al. 1995; Corbett et al. 2004; Huang and Xu 2008; Plank
2008; Xu and Bruck 1999; Xu et al. 1999]. Further optimizations investigate how to
schedule the XOR operations so that the common ones are calculated only once [Huang
and Xu 2003; Huang et al. 2007; Luo et al. 2009; Plank and Xu 2006]. The results from
these studies can directly benefit pyramid codes.

3. BASIC PYRAMID CODES

In this section, we briefly review the erasure-resilient coding (ERC) scheme, focusing
on systematic MDS codes. We define four key metrics concerning any ERC scheme.
We illustrate basic pyramid codes (BPC) through examples and provide formal defini-
tions. We show BPC offers a more flexible tradeoff among the key metrics than MDS
codes, for example, reconstruction read cost can be reduced by 50% with merely 11%
additional storage overhead.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:5

3.1. Brief Primer on Erasure-Resilient Coding

Before presenting pyramid codes, let us briefly review the erasure-resilient coding
(ERC) scheme. In particular, we focus on an ERC scheme that is systematic and maxi-
mum distance separable (MDS) [MacWilliams and Sloane 1977], attracting particular
attention in distributed storage system design.

Let a distributed storage system host & equal-size data blocks. An (n,k) ERC scheme
expands the & data blocks into n (n > k) same-size coded blocks and distributes the
coded blocks to n storage nodes.

An ERC scheme is systematic when the original £ data blocks are preserved in the
n coded blocks. Hence, in a systematic ERC scheme, the n coded blocks contain the
original £ data blocks and additional m = n — k redundant blocks. Used; G =1, --- ,k)
to denote the data blocks, and ¢; (j = 1,--- ,m) to denote the redundant blocks.

An (n,k) ERC scheme is MDS if and only if all the original % data blocks can be
obtained from any subset of coded blocks of size k. In the context of distributed storage,
an (n,k) MDS ERC scheme implies no data loss even when there are up to n —k storage
node failures, or the system is resilient to arbitrary n—k failures. For example, Figure 1
illustrates a (9, 6) systematic MDS code. The code consists of 6 data blocks and 3
redundant blocks. It tolerates up to 3 arbitrary failures.

The process of computing redundant blocks from data blocks is called encoding, and
the process of computing failed data blocks from other data and redundant blocks
is called decoding (or recovery). Most ERC schemes apply linear block codes, where
the redundant blocks are linear combinations of the data blocks, which are presented
algebraically as follows:

k
C; = Zai’jdi’ (1)
=1

where «; ;s are coding coefficients in a finite field (or ring) [MacWilliams and Sloane
1977].

Many commonly used ERC schemes in storage systems are specific examples of the
MDS codes. For example, the simple parity scheme, which is widely used in RAID-5
systems, computes the only redundant block as the binary sum (XOR) of all the data
blocks. It is essentially a (& + 1,%) MDS code. The replication scheme, which creates
r replicas for each data block, is indeed (r, 1) MDS code. Finally, Reed—Solomon codes
[Reed and Solomon 1960] are one of the most widely used classes of linear MDS codes.

3.2. Key Metrics
There are four key metrics concerning any ERC scheme.

Storage Overhead. The storage overhead of an ERC scheme is computed as the ratio
between all the blocks (data + redundant) and the data blocks, that is, n/k. For the (9,
6) MDS code, the storage overhead is 9/6 = 1.5.

Fault Tolerance. We use a simple probability model to characterize the fault toler-
ance of an ERC scheme. Assume each (data or redundant) block can fail independently
with probability p;. When there are x failures, denote the recoverable ratio as r, (x). For
the (9, 6) MDS code, up to three failures are fully recoverable, so r,(0) = ... = r,(3) =
1.0. On the other hand, four failures or more are not recoverable, so r,(x) = 0 for x > 4.
Enumerating through all possible failures, we characterize the fault tolerance of the
code by unrecoverable probability (denoted as pr), computed as following:

pr=10- er(x) (Z)p’,ﬁ(l —pp) Y. (2)

x=0

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:6 C. Huang et al.

d d d c ¢ ¢

T

A

(9, 6) MDS

(

(10, 6) T] T
Pyramid . 1.1 b
VAVAVAVAVAR G,

Fig. 1. Constructing a (10, 6) basic pyramid code from a (9, 6) MDS code.

Assuming p; = 0.01, the unrecoverable probability of the (9, 6) MDS code is 1.2 x 10~6.

More advanced Markov models can be applied to study mean time to data loss
(MTTDL), which takes into account the failure rate, repair time, and even failure
correlation. We refer interested readers to Xin et al. [2003] and Ford et al. [2010].
Alternatively, an elastic fault tolerance vector [Hafner and Rao 2006] can be computed
without requiring failure rates or making the Markovian assumption.

Access Efficiency. Systematic ERC schemes preserve the original data blocks as part
of the coded blocks. Hence, reading a data block can be directly served by the storage
node hosting the block. However, if the storage node is unavailable, the read operation
has to access the remaining blocks and recover the missing data block.

To characterize access efficiency, we define reconstruction read cost, denoted by R(x),
as the expected number of blocks required to serve an unavailable data block, when
there are x failures. In the (9, 6) MDS code, despite the number of failures, it always re-
quires six blocks to serve an unavailable data block. Therefore, R(1) = R(2) = R(3) = 6.

Update Complexity. When data blocks are updated, redundant blocks have to be up-
dated correspondingly. For every data block update, the number of redundant block up-
dates is typically referred to as update complexity. Update complexity is an important
metric for storage systems with in-place updates. For the (9, 6) MDS code, whenever
any data block is updated, all the three redundant blocks (¢q, e2, and c3) have to be
updated as well, so the update complexity is 3.

3.3. Basic Pyramid Codes: An Example

Now we use an example to describe BPC and demonstrate how they significantly im-
prove reconstruction read performance. Our example constructs a (10, 6) BPC from the
(9, 6) MDS code in Figure 1, which could be a Reed—Solomon code, or any other MDS
codes (such as a STAR code [Huang and Xu 2008]).

We divide the six data blocks into two equal size groups S; = {d;,dg,d3} and Sg =
{d4,d5,dg}. We then compute one redundant block for each group, denoted as ¢y 1 for
S1 and e for S, as follows.

3 6
ci1=) ai1d;; ero=) o;1d;. 3)
i—1 i=4

Since ¢1,1 and ¢12 are computed within their groups, we call them group redundant
blocks. Note that we use the same «; 15 as in Eq. (1). Hence, it is easy to see that

C1,1 +C1,2 = Cy,

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:7

that is, the sum of the two group redundant blocks equals to ¢1 (the first redundant
block) in the MDS code. Alternatively, the group redundant blocks (e1; and ¢y g, re-
spectively) can be interpreted as the projection of the MDS redundant block (¢1) onto
each group (by nulling the data blocks in all other groups).

Next, we compute two additional redundant blocks (co and c3), exactly the same
way as the MDS code. In contrast to the group redundant blocks, these two redundant
blocks are computed from all the six data blocks, so we call them global redundant
blocks. The code is illustrated in Figure 1.

3.4. Key Metrics of Basic Pyramid Codes

Now, we examine the key metrics of the (10, 6) BPC and compare them to the (9, 6)
MDS code.

Access Efficiency. The BPC is superior in its reconstruction read cost. When a single
data block (say di) fails, reconstruction read of the failed block requires three other
blocks — dg, d3, and ¢y 1. Hence, R(1) = 3, half that of the MDS code! When two blocks
fail, if both failed blocks belong to different groups, reconstructing any failed block
requires only three blocks. Only when both failed blocks belong to the same group,
reconstruction requires six blocks. Enumerating through all the cases, R(2) = 4, much
lower than six in the MDS code. Even when three blocks fail, R(3) is only 4.75, still
lower than six in the MDS code.

Storage Overhead. Compared to the MDS code, the BPC requires additional stor-
age space. The storage overhead of the BPC is 10/6 = 1.67, compared to 9/6 = 1.5 of
the MDS code. Hence, the improvement of access efficiency comes at the cost of extra
storage overhead. That is, compared to the MDS code, the BPC reduces reconstruction
read cost by 50% with merely 11% additional storage overhead. This example per-
fectly illustrates the core concept of pyramid codes — trading storage space for access

efficiency.

Fault Tolerance. We now examine the fault tolerance of the (10, 6) BPC. We first
show that the code can recover arbitrary three failures. Assume there are arbitrary
three failures out of the total ten blocks, which can fall into one of the following two
cases: (1) both ¢1,1 and c; 2 are available; or (2) at least one of them fails. In the first
case, ¢1 can be computed from €1 ; and ¢y 2. Then, it becomes recovering three failures
from the (9, 6) MDS code, which is straightforward to decode. In the second case, it is
impossible to compute ¢;. However, other than c; 1 or €1 2, there are at most two block
failures. Hence, from the perspective of the (9, 6) MDS code, there are at most three
failures (¢; and those two failed blocks), and thus the case is also decodable.

The BPC also tolerates some four failures. With similar arguments, we can show
that 73% of the four-failure cases are recoverable. The BPC employs four redudant
blocks, but does not tolerate arbitrary 4 failures. Hence, it is not MDS.!

In summary, for the (10, 6) BPC, recoverable ratio r,(0) = ... = r,(3) = 1.0, rp(4) =
0.73 and rp(x > 5) = 0. Again, assuming failure probability p, = 0.01, we obtain
unrecoverable probability py = 5.6 x 10~7. Compared to pr=12x 106 for the MDS
code, the BPC provides higher fault tolerance. The comparison is shown in Figure 2.

Update Complexity. Whenever any data block is updated, the BPC has to update
three redundant blocks (both €3, €3, plus either ¢1,1 or €12). Its update complexity is
the same as that of the MDS code.

1A (10, 6) MDS code requires the same storage overhead, but can tolerate arbitrary four failures. However,
its reconstruction requires six blocks and is more costly.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:8 C. Huang et al.

reconstruction read cost fault tolerance storage update
single-failure | double-failure | triple-failure | (unrecoverable prob.) overhead complexity
(9, 6) MDS 6 6 6 1.2 x 10°° 1.50 3
(10, 6) Pyramid 3 4 4.75 5.6 x 10~ 1.67 3
\ savings [50% [33% [21% |

Fig. 2. (9, 6) MDS vs. (10, 6) BPC.

In conclusion, the BPC uses more storage space than the MDS code, but it gains
in reconstruction read cost and fault tolerance, while maintaining the same update
complexity.

3.5. Formal Definition of Basic Pyramid Codes

In general, a BPC can be constructed as follows. We start with a (n,k) MDS code, and
separate the & data blocks into L disjoint groups (denoted as S;, [= 1,---,L), where
group S; contains %; blocks (i.e., |S;| = k;).2 Next, we keep m1 out of the m redundant
blocks unchanged. These are the global redundant blocks. We then computes mg =
m — mq group redundant blocks for each group S;. The jth redundant block for group
S; (denoted as ¢;;) is simply a projection of the jth redundant block in the MDS code
(i.e., ¢j) onto the group S;. In other words, ¢;; is computed the same as ¢; in the MDS
code by simply setting all groups other than S; to 0. The combination of all ¢;;s for the
same [yields the redundant block ¢; in the MDS code.

The resulting BPC is systematic. It contains £ data blocks and mL + m redundant
blocks, where there are mg group redundant blocks for each of the L groups and mq
global redundant blocks. The code is presented as (k + moL + m1,k), where mg +m1 =
n—k.

The BPC satisfies the following theorem.

THEOREM 1. A (¢ + moL + mqy,k) BPC constructed from a (n,k) MDS code
(mo + mq1 = n — k) can recover arbitrary m = mgy + mq erasures.

PROOF. We consider a failure case with m erasures. Assuming r out of the m era-
sures are among the myL group redundant blocks, then the remaining m — r erasures
are among the £ data and the m; global redundant blocks. We prove the theorem in
the following two cases: (1) r > mg; and (2) r < my.

When r > myg, simply drop all the group redundant blocks. The remaining k£ data
and mq global redundant blocks form a (& + m1, %) MDS code. The MDS code tolerates
up to m1 erasures. The number of actual erasures is m — r < m — mg = m1. Therefore,
the case is recoverable.

Now, we consider the case when r < mg. For each j, when all the group redundant
blocks c;;s (over all [s) are available, their XOR sum yields ¢; (a redundant block in
the MDS code). Denote m, as the number of XOR sums can be calculated. Then, we
have m;, > mg —r > 0. The m;; XOR sums, together with the k£ data and the m; global
redundant blocks, form a (k& +m, +m1, k) MDS code. The number of erasures tolerated
by the MDS code is up to my+m1 > mo—r+m1 = m—r. The number of actual erasures
is m — r. Therefore, the case is also recoverable. O

In addition, the BPC holds the following property.

COROLLARY 3.1. In the (kK + moL + m1,k) BPC, each group S; is a (k; + mq,k;)
MDS code.

2Groups can be of different size, so there is no need to enforce £ divides L.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:9

subgroup

(redundancy
group

r redundancy

global
redundancy

group
redundancy

global
redundancy

(a) two hierarchy - (124+2x3+2, 12) (b) three hierarchy - (12+1x4+1x2+2, 12)

Fig. 3. Multi-hierarchical extension of basic pyramid codes. (Same storage overhead, different reconstruc-
tion read cost and fault tolerance).

PROOF. We prove the statement by contradiction. Assume group S;, which is a (k; +
mo, k;) code, is not MDS. Then, the group fails to recover a certain failure case with
mg erasures. Now, further assume all the m global redundant blocks are also failures.
Lacking global redundant blocks, the m(erasures remain unrecoverable at the global
level. Hence, the failure case with my+m erasures is unrecoverable in the BPC. This,
however, contradicts with the above theorem. O

3.6. Decoding Basic Pyramid Codes
Decoding BPC is straightforward, and we briefly summarize as follows.

— Step 1. Start from the group level. For each group, if the available redundant blocks
are no less than the failed data blocks, recover all the failed data blocks and mark
all the blocks (both data and redundant) available. For failed redundant blocks, com-
pute them only if they are used in the following step.

— Step 2. Move to the global level. For each j (1 < j < my), if all the group redun-
dant block c¢;;s (over all /s) are marked as available, compute their XOR sum as ¢;
(a redundant block in the original MDS code), and add ¢; as an additional global
redundant block. On the global level, if the number of available redundant blocks
equals or is more than the number of failed data blocks, recover all the failed blocks.
Otherwise, remaining failed blocks are declared unrecoverable.

3.7. A Multi-Hierarchical Extension of Basic Pyramid Codes

Next, we illustrate how to extend BPCs to more than two hierarchies. First, we con-
struct a (12 + 2 x 3 + 2, 12) BPC from a (16, 12) MDS code, as shown in Figure 3(a).
Again, the code contains two group redundant blocks for each of the three groups, in
addition to two global redundant blocks. Next, we keep the same storage overhead and
extend the BPC to multiple hierarchies. Figure 3(b) shows an example of a 3-hierarchy,
where the data blocks are first divided into two groups and then further divided into
four subgroups. For redundant blocks, there are global ones and group ones. In ad-
dition, there are subgroup redundant blocks. The particular example in Figure 3(b)
contains one subgroup redundant block for each of the four subgroups, one group re-
dundant block for each of the two groups, and two global redundant blocks. It can be
denotedasa(12+1 x4+ 1 x 2+ 2,12) BPC.

As a simple exercise, Theorem 1 and Corollary 3.1 can be readily extended to mul-
tiple hierarchies. Similarly, the decoding of multi-hierarchy BPCs will start with the

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:10 C. Huang et al.

(a) Reconstruction read cost

reconstruction read cost fault tolerance storage

1-failure | 2-failure | 3-failure | 4-failure | (unrecoverable prob.) overhead
(16, 12) MDS 12 12 12 12 4.0 x 10~7 1.33
2-Hierarchy Pyramid 4 4 4.47 5.24 1.7x 1078 1.67
3-Hierarchy Pyramid 3 3.47 4.11 4.96 3.0 x 10— 1.67

(b) Read cost, fault tolerance vs. storage overhead

Fig. 4. MDS code vs. multi-hierarchy BPCs.

lowest level and gradually move to the global level. This is analogous to climbing up a
pyramid, just as the name of the codes suggests.

Now, we compare the two BPCs to the (16, 12) MDS code. The comparison of re-
construction read cost is presented in Figure 4(a), while that of fault tolerance and
storage overhead in Figure 4(b). We conclude that both BPCs reduce reconstruction
read cost significantly over the MDS code, across all failure cases. Between the two
BPCs, while the storage overhead is the same, one achieves slightly lower reconstruc-
tion read cost at the cost of slightly worse fault tolerance (or higher unrecoverable
probability). Hence, it is important to note that, besides offering more flexibility than
MDS codes in trading storage space for access efficiency, BPC also allows additional
level of flexibility — with fixed storage overhead, it is possible to vary BPC and further
balance between access efficiency and fault tolerance.?

4. RECOVERABILITY LIMIT

A BPC achieves flexible tradeoff among the four key metrics: storage overhead, fault
tolerance, access efficiency, and update complexity. In this section we show that it can
be further improved. In particular, it is possible to improve one key metric — fault
tolerance — without affecting the remaining three metrics.

4.1. Motivating Example

We start with a motivating example. Consider a (12 + 2 x 2 + 2, 12) BPC, as shown
in Figure 5. The code is constructed from a (16, 12) MDS code. It contains two groups,
each with two group redundant blocks. In addition, it contains two global redundant
blocks. Here, mg = m1 = 2 (and L = 2), so we know that the code tolerates arbitrary
m = mgo + m1 = 4 failures. Since there are six redundant blocks in total, the code also

3Note that the probabilities will be very different between 1-failure and 4-failure. Hence, when using pyra-
mid codes in practical systems, the expectation of reconstruction read cost should be calculated by taking
into account the probability difference across the failure cases.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:11

DO hadte Nadtc hadrc hadith dy dy dy dy dit A |

d; dg dy dip diy di2 d; dg dy dig dyy diz

group) group)

f\l bal dund (\I bal dund
global redundanc: globa redundanc
C3 C4 redundancy Y C3 C4 redundancy Y

(a) unrecoverable at all (b) unrecoverable as BPC

Fig. 5. Motivating example for recoverability condition. (Six failures each, marked by “x”).

tolerates some cases with five or six failures. The focus of this section is to establish
the limit of recoverability for cases beyond four failures.
The BPC code is defined by the following set of linear equations:

6

Cj1= Zai,jdi, J=12, 4)
i=1
12

Cj2 = Zaudi, J=12 (5)
i=7
12

Cj = Zai:idi J = 3,4, (6)
i=1

where the coding coefficients o; js are from the MDS code. To check whether a failure
case is recoverable, we simply treat failure blocks as unknowns in the linear equations
above. A failure case is recoverable if and only if the linear equations are solvable.*

Now, we apply the standard method on the two failure cases, each with six failures,
shown in Figure 5. The coding equations in neither failure case in Figure 5 are solv-
able. Hence, we conclude that neither failure case is recoverable.

For the first failure case in Figure 5(a), all the six data blocks in the second group
are available, so the two redundant blocks in the group are useless because they can be
computed anyway. Hence, those two redundant blocks should be removed from decod-
ing. Effectively, we are left with six unknowns and only four coding equations, which
is impossible to solve.

For the second failure case in Figure 5(b), the linear equations are unsolvable, so
the failures definitely cannot be recovered. However, is this the limit? None of the
redundant blocks appears useless. Effectively, there are six unknowns and six coding
equations. Next, we establish the limit of recoverability and show that this failure case
can in fact become recoverable when the coding equations are modified.

4.2. Coding Dependency and Coding Equations

Before describing the limit of recoverability, we first clarify two concepts that uniquely
define an ERC scheme: coding dependency and coding equations.

4Gaussian elimination is a standard method to check whether a set of linear equations is solvable. Alterna-
tively, more efficient matrix methods [Hosekote et al. 2005, 2007] can also be applied.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:12 C. Huang et al.

[] [] >
\
dy, d dst 8

Fig. 6. A simple (6, 3) code.

Coding dependency defines which set of data blocks is used to compute each indi-
vidual redundant block. Let P(¢;) denote a bit vector of length k&, where P(c))[i] = 1
means data block d; is used to compute redundant block ¢; and P(c;)[i] = 0 means oth-
erwise. Then, the union of all the sets, that is, U/P(c;), completely defines the coding
dependency of the ERC scheme.

In addition to coding dependency, coding equations are required to uniquely define
the ERC scheme. Besides defining which set of data blocks, coding equations also de-
fine how the set of data blocks compute each redundant block, or the coding coefficients
for computing the redundant block.

Among the four key metrics of the ERC scheme, coding dependency determines three
of them: storage overhead, reconstruction read cost, and update complexity. Coding
equations only affect the forth metric: fault tolerance.

We use the (6, 3) code in Figure 6 as an example to illustrate these two concepts. The
code contains three data blocks (d{, dg, and d3) and three redundant blocks (¢, c9,
and c3). Its coding dependency is defined by UJ‘?’ZIP(cj), where P(c1) =[1,1,0], P(eg) =
[0,1,1], and P(e3) =[1,0, 1]. Without knowing the coding equations, we can already
determine three key metrics: (i) storage overhead 6/3 = 2; (ii) reconstruction read
cost R(1) = R(2) = R(3) = 2 (reconstructing any unavailable data block requires two
other blocks); and (iii) update complexity is two (updating any data block affects two
redundant blocks).

The code is completely defined with coding equations. Assume ¢; = dj + do,
co = dg + ds, and ¢3 = dj + dg. To calculate fault tolerance, we compute recover-
able ratio 7, (x) (recall x is the number of failures). It is easy to verify that the code
tolerates up to two arbitrary failures, so r,(0) = r,(1) = r,(2) = 1.0. For three failures,
the interesting case is when all the three data blocks fail, but the three redundant
blocks are available. It turns out the three linear coding equations are dependent and
thus unsolvable, so the case is unrecoverable. Considering all failure cases, we obtain
rp(3) = 0.8. Therefore, the unrecoverable probability is py = 4.0 x 1076,

However, the fault tolerance can be improved by modifying the coding equations.
If we make e¢3 = d; + 2d3,? then the case with three data block failures becomes
recoverable. Now, the recoverable ratio increases to r,(3) = 0.85 and the unrecoverable

probability reduces to py = 3.1x 10-6. Note that this modification does not affect coding
dependency, so the storage overhead, access efficiency, and update complexity remain
the same.

This example illustrates that it is possible to improve fault tolerance without affect-
ing storage overhead, access efficiency, and update complexity. It is achieved through
modifying only coding equations while keeping coding dependency untouched. Now,
a fundamental question arises—given predetermined coding dependency, what is the
limit of recoverability?

5Unless noted otherwise, all additions and multiplications are defined in finite field GF(28). The field is
generated using 28 +x% + 23 +x2 + 1 as the prime polynomial [MacWilliams and Sloane 1977]. All field
elements are represented using integer notation [Blahut 2003, Ch. 4]. For example, element 2 in integer
notation is equivalent to x in polynomial notation.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:13

(a) unrecoverable case (b) recoverable case (full-
(full-size matching does size matching exists)
not exist)

Fig. 7. Tanner graphs (bold edges show maximum matchings).

4.3. Recoverability Limit

To answer this fundamental question, we establish a necessary condition, called the
matching condition, to characterize the limit of recoverability for any failure case. The
condition is necessary, and therefore must be satisfied if a case is recoverable. However,
the condition is not sufficient. That is, even when the condition is satisfied, the case
could still be unrecoverable.

4.3.1. Maximally Recoverable Property. For any failure case, whether the matching con-
dition is satisfied can be determined based solely on coding dependency. That is, it
is not affected by coding equations. For instance, the failure case in Figure 6 always
satisfies the matching condition, regardless of coding equations. On the other hand,
when the matching condition is satisfied, it is possible to modify coding equations such
that an unrecoverable case becomes recoverable. Conceivably, it is desirable to design
coding equations such that all failures cases satisfying the matching condition are re-
coverable. Formally, this is defined as a maximally recoverable property -

Definition 4.1. An erasure-resilient coding scheme is said to hold the maximally
recoverable (MR) property under predetermined coding dependency, if all failure cases
satisfying the matching condition are recoverable.

For the unmodified (6, 3) code, the failure case in Figure 6 satisfies the matching condi-
tion but is unrecoverable. Hence, the code does not hold the MR property. The modified
coding equations result in a new code. Once we formally define the matching condi-
tion, it can be readily verified that all failure cases satisfying the condition are indeed
recoverable. Therefore, the new code does hold the MR property.

4.3.2. Matching Condition. Coding dependency can be represented using the Tanner
graph [Tanner 1981]. A Tanner graph is a bipartite graph, where nodes on the left
part of the graph represent data blocks (data nodes hereafter), and nodes on the right
represent redundant blocks (redundant nodes). An edge is drawn between a data node
and a redundant node, if the computation of the redundant block uses the data block.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:14 C. Huang et al.

The matching condition can be then represented using reduced decoding Tanner
graph. Given a failure case, a reduced decoding Tanner graph (denoted as T') is derived
by removing all available data blocks and failed redundant blocks from the Tanner
graph. For instance, the reduced decoding Tanner graphs corresponding to the failure
cases in Figure 5 are shown in Figure 7.

Furthermore, we define matching (denoted by M) as a set of edges in the reduced
decoding Tanner graph, where no two edges connect at the same node. The size of
the matching |M| equals to the number of edges in the set. Define maximum match-
ing (denoted by M,,,) as a matching with the maximum number of edges. Also, if |M,,|
equals the number of data nodes, such a matching is called a full-size matching (de-
noted by My). For example, the reduced decoding Tanner graph in Figure 7(b) contains
a full-size matching, while the one in Figure 7(a) does not.

With these definitions, the matching condition for recoverability is stated in the fol-
lowing theorem. (Note that when there is no ambiguity, blocks and nodes are used
interchangeably, as the recovery of a failure case and the recover of a reduced decod-
ing Tanner graph.)

THEOREM 2. Forany ERC scheme, a failure case is said to satisfy the matching con-
dition whenever the corresponding reduced decoding Tanner graph contains a full-size
matching. A failure case is recoverable only when it satisfies the matching condition.

PROOF. We prove this theorem by contradiction. Examine an arbitrary recoverable
failure case, where the reduced decoding Tanner graph T consists of r; data nodes and
r. redundant nodes. (Again, this means the failure case has r; failed data blocks and
r. available redundant blocks.) Obviously, r; < r.. Now assume T does not contain a
full-size matching. Then, the size of its maximum matching M, is less than rg, that is,
|M,,| < rq. Based on the Konig—Egervary theorem [Schrijver 2003] in graph theory, in
a bipartite graph, the maximum size of a matching is equal to the minimum size of a
node cover. Hence, a minimum node cover (denoted by N.), which contains a minimum
set of nodes covering all edges in T, has |M,,| nodes, that is, |N.| = |M,,|. Let ng be the
number of data nodes in N, then |M,,| — ng is the number of redundant nodes in N,.
It is clear that ngy < |M,,| < ry.

Now let us assume all the data blocks in N, are somehow known (not failures any
more), then we can deduce a new failure case with fewer failed blocks, which corre-
sponds to a new Tanner graph 7’. Any redundant node that is not in N, can be re-
moved from 7" because those redundant nodes can only connect to the data nodes in
N, (otherwise there will be edges in T not covered by N.), and thus isolated in 7".
Hence, there are at most |M,,| — ng redundant nodes left in 7”. On the other hand,
there are still r; — ny (positive value) data nodes left. As |M,,| —ng < rq —ny, there are
fewer redundant nodes than the data nodes, and thus 7" is not recoverable. Therefore,
T should not be recoverable either, which contradicts with the assumption. O

We emphasize that evaluating recoverability using the matching condition is more
general than decoding pure XOR-based codes, such as LDPC codes [Gallager 1963;
Luby et al. 2001; Maymounkov and Mazieres 2003] or flat XOR codes [Greenan et al.
2008], using Tanner graphs. Again, recall the (6, 3) code in Figure 6, where the case
with three data block failures satisfies the matching condition, but is unrecoverable as
a pure XOR-based code.

Now, we revisit the two failure cases of the BPC in Figure 5. For the first case, the
maximum matching contains four edges, as shown in Figure 7(a). It is not a full-size
matching. Therefore, the case does not satisfy the matching condition and is definitely
unrecoverable. For the second case, the maximum matching contains six edges, as

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:15

shown in Figure 7(b). It is indeed a full-size matching. Therefore, the case satisfies the
matching condition.

Because the case is unrecoverable (the corresponding coding equations unsolvable),
we conclude that BPC does not hold the maximally recoverable property. Next, we will
show how the property can be satisfied by modifying coding equations, while keeping
coding dependency untouched. The resulting codes are no longer BPC. They belong to
a new class of codes, called generalized pyramid codes (GPC). We show that GPC holds
the maximally recoverable property, that is, all failure cases satisfying the matching
condition now become recoverable.

5. GENERALIZED PYRAMID CODES

In this section we describe generalized pyramid codes (GPC), which are not trivial
extensions of BPC, but rather a new class of ERC schemes. GPC holds the maximally
recoverable property. To the best of our knowledge, GPC is the first class of non-MDS
codes holding such a property.® Pure XOR-based non-MDS codes, such as LDPC codes
[Gallager 1963; Luby et al. 2001; Maymounkov and Mazieres 2003]; Weaver codes
[Hafner 2005] and flat XOR codes [Greenan et al. 2008, 2010], subject to the same
issue as the (6, 3) code in Figure 6, and do not hold the MR property.

Moreover, compared to BPC, GPC also accommodates more flexible coding depen-
dency. While BPC enforces nested and non-overlapping groups, GPC accommodates
arbitrary coding dependency. For the (6, 3) code in Figure 6, the overlapping coding
dependency is not allowed in BPC, but perfectly acceptable in GPC.

Despite of the distinctions, we decide to categorize both classes of codes with a com-
mon name, pyramid codes, as they both aim at the same goal of trading storage space
for access efficiency, and also follow the same concept of climbing up a pyramid during
failure recovery.

An ERC scheme is completely defined by coding dependency and coding equations.
Since GPC accommodates arbitrary coding dependency, the key to GPC lies in con-
struct appropriate coding equations to hold the maximally recoverable property. In
this section we provide a systematic algorithm for such construction.

5.1. Matrix Representation of ERC

We first describe a matrix representation of systematic ERC. Let D represent the
data blocks [dj,ds,--,d;]T and C represent all the blocks (data + redundant)
[e1,c9,- - ,ck+m]T. Then, the matrix representation of ERC is C = G x D, where G is
an x k generator matrix. Let g; denote the jth row vector in G. For systematic ERC, g;s
(1 <j < k) are unit vectors from a & x k identify matrix, and thus ¢; = d; (1 <j < &).
Moreover, gjs (k < j < n) consists of coding coefficients and the ith entry g;; = o; j_z,
where as are defined in Eq. (1).

When blocks fail (the failed blocks are denoted as ¢rs, where 1 < f < k + m), we
set row vector c¢s to zero in C (make it C;) and similarly row vectors grs to zero in G
(make it G and call it generator submatrix). Now, we have

C; =G5 xD. (7)

To this end, both Cs and Gs are known, while D contains unknown vectors (dgs, 1 <
f < k). The failed data blocks can be recovered if and only if Eq. (7) is solvable (see
Plank [1997] for a more detailed tutorial).

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:16 C. Huang et al.

Fig. 8. Generalized pyramid code example.

5.2. Constructing Generalized Pyramid Codes: An Example

We now walk through an example to illustrate the construction of GPC. To complete
the construction, we need to define both coding dependency and coding equations.

We consider the coding dependency defined in Figure 8, where there are four data
blocks and four redundant blocks. The four data blocks are divided into four groups and
each group computes one redundant block from only two data blocks. Clearly, coding
dependency determines which entries in the generator matrix are non-zero. Hence, for
this particular code, we have

M1 0 0 0 7
0 1 0 0
0 0 1 0
0 0 0 1

G= 951 952 0 O ®

0 0 Gs3 964

971 0 g73 O

L 0 gg2 O Ggyl

The rest of the construction is to determine appropriate values of the non-zero entries
in G, such that the maximally recoverable property holds.

The construction takes an iterative approach. First, we determine the coding coeffi-
cients for ¢1, such that the (5,4) subcode formed by the four data blocks and ¢; holds
the maximally recoverable property. Next, we determine the coding coefficients for co,
without changing those for ¢;. Again, we ensure the (6,4) subcode still holds the MR
property. Then, we determine the coding coefficients for ez, and so on, while always en-
suring the MR property. In matrix terms, this is equivalent to starting with an identity
matrix and expanding the generator matrix G one row vector in each iteration, while
ensuring the MR property.

5.2.1. Expanding Generator Matrix. Now we elaborate on how to expand the generator
matrix while ensuring the MR property. Let G'~1 and G/, respectively, denote the gen-
erator matrix before and after adding g, the coding vector for ¢;. Hence, the size of

G/lis (k+j— 1) x k and that of G/ is (k +) x k. Also, T =[GI17 g, T,

To ensure the MR property after adding gy, we need to guarantee that any subma-
trix of the generator matrix (of size £ x k) is nonsingular. For generator submatrices,
not including gy, this should always be true, since the MR property is already

6MDS codes hold the maximally recoverable property by nature.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:17

ensured when constructing G/~! in earlier iterations. Therefore, during the iteration
for adding g.,;, we simply need to guarantee any generator submatrix, including gy;

nonsingular. Denote such a generator submatrix as Gé Then, the submatrix needs to
be full-rank, or rank(G.) = £.7 .
In addition, we consider the (k—1) x k£ submatrix, obtained by removing gy, ; from G.

Denote the submatrix as G]s:\gkﬂ. Clearly, a full-rank G{s implies that rank(G{;\gkﬂ) =
k — 1. Also, let null(G) denote the transpose of G’s nullspace. Then, rank(G{s\gkﬂ) =

k — 1 dictates that null(Gé\ng) is a single row vector. Finally, a full-rank G/, requires
g1+ not orthogonal to the nullspace row vector. Therefore, the dot product of the two

should be nonzero, or null(Gé\gk+j) - 8ryj # 0.
In summary, to ensure the MR property, we need to choose gy ; such that for any

generator submatrix G} where rank(G;\g1;) = k — 1, g, satisfies null(G}\g,) -
gr+; 7 0. Since the nullspace of each generator submatrix 1s a single row vector, we
can store all the nullspace vectors in an auxiliary matrix, denoted as U, to facilitate
the search of g;;. To that end, g is accepted as long as it is not orthogonal to any
row vector (denoted as u) in U, or u - g ; # 0.

Now, we walk through the example of adding g5, the coding coefficients for ¢1. Here,
a generator submatrices G} is of size 4 x 4 and consists of three vectors from g; to
g4 and gs. Therefore, submatrix Gsl\gg, consists of three vectors from g; to g4. We
calculate the rank of each submatrix. For all the submatrices with rank 3, we compute

the nullspace and store the nullspace vector in U. There are (g) such submatrices and
we obtain the following nullspace matrix

0001

0010
U—0100. 9

1000

We iterate through each vector u in the nullspace matrix U to determine g5 such that
u- gr; # 0. Note that g5 contains only two nonzero entries: g51 and g52. Hence,
u; - g5 = 0 and ug - g5 = 0. Taking u; as an example, u; - g5 = 0 implies that it is
impossible to recover d4 from di, do, d3, and c¢1. This can be verified from the coding
dependency in Figure 8. u;-g;; = 0is equivalent to a case that is impossible to recover.
Therefore, we simply skip such u;s when choosing gj,;. Using the algorithm, which we

will describe next, we choose g5 1 =1 and g5 2 = 142.8

5.2.2. An Algorithm for Choosing gn,. Given U, we now describe a general algorithm to
choose g,,, such that Vu € U, u - g, # 0. The algorithm starts with random values
in nonzero entries. It checks the dot product of u; and g,,. If u; - g,, # 0, then keep
gm and move on to up. The process continues until it encounters the first vector u;,
which satisfies u; - g, = 0. As discussed before, if u; - g, = 0 (i.e., nonzero entries of g,
always correspond to zero entries of u;), u; is simply skipped. Otherwise, the algorithm
augments gn, (make it g’,,) such that the following two conditions are satisfied: (1)
u; - g, # 0; and (2) all previous u’s are not affected, that is, u; - g’,, # 0 (i <)) still
hold.

"Note that there are failure cases that don’t satisfy the matching condition, and are thus not recoverable.
The generator submatrices for these cases are always singular despite gj, 4 We skip these submatrices.

8Again, we use integer notation for the elements in the finite field GF(28) [Blahut 2003, Ch. 4].

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:18 C. Huang et al.

1 G := i, U= Tpxk

2: form=k+1:ndo

3: [/ gi¢"°: boolean array marking constant zero entries
4 // t: index of the ¢ entry in g,

5:. fort=1:kdo

6: g |[t] ;= random value in the field
7 if gZ¢"°[t] = true then

8 gmlt] :=0

9: ug := null // ug: all dot products of u; - g,
10 for j=1:|U[,u; € Udo

11: if u; - g, # 0 then

12: ug[j] := u; - g, repeat

13: if u;-g, =0 then

14: ug[j] := 0, repeat

15: I Epaq: all bad €;’s, uu: all dot products of u; - u;
16: Epag = null, uu := null

17: fori=1:5—1do

18: uufi] == u,; - u;

19: if uufi] = 0 then
20: repeat
21: Epad = Epaa + {ugli]/uuli]}
22: ¢ = random value out of Epyy
23: /l argument g,,, and update ug
24: gm ‘= &m t+ €u;
25: fori=1:jdo
26: ug[i] := ug[i] + euulf]
27: for t =1: k,g2"°[t] = true do
28: gmlt] :==0
0 uglj) =, g
30: /I update U and add g, to G
31 for S’ = {k-2 rows in G} do
32: S=58+{gmn}
33: if rank(S) = k — 1 then
34: u := null space vector of S
35: U:=U+{u}
36: G:=G+{gn}
37: return

Fig. 9. Constructing generalized pyramid codes.
The first condition can be satisfied by setting g, = g + €u; (¢ # 0), as any nonzero
¢ satisfies
uj g, =uj (gn+eu) =cu;-u; #0.

Now we simply need to find an ¢ such that the second condition is also satisfied. For-
mally, this involves finding an ¢ such that

Vu (1<i<j), w- g, #0. (10)

We compute all s that violate Eq. (10) (call them bad ¢s) and construct a set to hold
them (denote as &,g). As long as we pick an € out of the set &4, it is guaranteed to

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:19

reconstruction read cost fault tolerance storage
single-failure | double-failure | triple-failure | (unrecoverable prob.) overhead
(9, 6) MDS 6 6 6 1.2x10°° 1.50
(10, 6) Basic Pyramid 3 4 4.75 5.6 x 107 1.67
(10, 6) Generalized Pyramid 3 4 4.75 3.1 x 107 1.67
[savings [50% [33% [21% |

Fig. 10. MDS code vs. pyramid codes. (The unrecoverable probability of GPC is 45% lower than that of
BPC.)

satisfy the second condition. To construct &4, simply compute all the bad ¢;s (1 <i <
J), where each ¢; satisfies u; - g, = 0 such that

u; - 8m
€ = ——.
u; - u;

To this end, as long as the number of bad ¢;s in &,y (i.€., |Epgql) is less than the number
of symbols in the finite field, a desirable ¢ is guaranteed to be found. In the worst
case, all bad ¢;s happen to be unique during the final round (i.e., finding g,), then
1Ebad] = (kf 1) (the number of vectors in U). Still, as long as the field size is greater

than (,",), the construction of GPC is guaranteed to succeed.

5.2.3. Construction Algorithm Summary. Using the simple example, we have described all
the details in the construction of GPC. Here, we briefly summarize the entire procedure
(refer to Figure 9 for complete details).

— Step 1. Start with a & x k& identity matrix G = I, and construct an empty null
space matrix U.

— Step 2. Update U. Enumerate through all submatrices S formed by any & — 1 rows
from G. If the rank of S is 2 — 1, compute its null space vector and append its
transpose to U. Otherwise, skip S.

— Step 3. Find a g;,, such that Vu € U, u-g,, # 0, which adopts the previously described
algorithm. Update G by adding g, to it.

— Step 4. Repeat Step 2 and 3 until the entire generator matrix G is completed.

5.3. Maximally Recoverable Property

THEOREM 3. GPC holds the maximally recoverable property. (see proof in
Appendix 1)

5.4. Comparison with Basic Pyramid Codes

Now, we revisit the very first example (Figure 1) to illustrate the difference between
BPC and GPC. Recall that the (10, 6) BPC is constructed from the (9, 6) MDS code.
The code tolerates up to three arbitrary failures. In addition, it recovers 73% of four
failures.

Here we construct a (10, 6) GPC, which keeps the same coding dependency as the
BPC. That is, the six data blocks are divided into two groups. Each group computes
one redundant block. In addition, the code contains two global redundant blocks. It is
easy to verify that, when blocks fail, the reconstruction read cost is the same for both
the BPC and the GPC. In addition, they both tolerate up to three arbitrary failures.
The GPC, however, recovers four failures more — 86% compared to 73%. Hence, the
GPC provides higher fault tolerance. Indeed, in terms of the fault tolerance metric, the
unrecoverable probability of the GPC is 3.1 x 10~7, 45% lower than that of the BPC.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:20 C. Huang et al.

(a) Failure Pattern (b) Reduced Tanner
Graph

Fig. 11. Decoding generalized pyramid codes (five block failures).

The comparison of reconstruction read cost, fault tolerance and storage overhead is
summarized in Figure 10. In summary, the GPC provides higher fault tolerance than
the BPC, while keeping the other three key metrics the same.

6. DECODING GENERALIZED PYRAMID CODES

A single block failure can always be reconstructed using the smallest group contain-
ing the failed block. When multiple blocks fail in GPC, however, there are typically
several different sets of blocks that can be used for reconstruction (simply called a re-
construction set). For instance, Figure 11(a) shows a GPC with five data block failures.
There are at least two different reconstruction sets: (1) one set first recovers dg and
d4 horizontally (requires four block reads), then dg vertically (requires one additional
block read), and finally d3 and d4 horizontally (require three additional block reads).
This reconstruction set requires eight block reads. (2) Another set first recovers d3 and
d4 horizontally (requires four block reads), and then dg, d7, and dg all vertically (re-
quire three additional block reads). This reconstruction set requires seven block reads
and thus is more efficient. In general, determining a minimum size reconstruction set
can be nontrivial. The focus of this section is to develop algorithms to find minimum
reconstruction set for multiple failures.

Given multiple failures (including data and redundant blocks), we are concerned
with two types of reconstruction: (i) complete reconstruction that recovers all the failed
data and redundant blocks; and (ii) on-demand reconstruction that recovers a single
failed data block. Complete reconstruction typically happens after permanent failures,
where any affected data or redundant blocks need to be reconstructed. On the other
hand, on-demand reconstruction typically happens during transient failures, where
read requests need to access particular failed data blocks, but not redundant ones.

6.1. Complete Reconstruction

The minimum set for complete reconstruction can be derived based on the following
theorem.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:21

D¢ := failed data nodes

1:

2: C“ := all available redundant nodes

3: overhead := oo

4: for C§ = subsets of C* with size |D°| do

5. if 3 full-size matching between C% and D® then

6: co := |C%| + available data blocks connected to C%

7: 0; := co + overhead to recover failed redundant blocks
8: overhead = min(overhead, o;)

9:
10: return

Fig. 12. Minimum cost repair.

THEOREM 4. Given d data block and ¢ redundant block failures in a GPC, the
minimum reconstruction set always includes exactly d redundant blocks. In addition,
it includes every data block, from which the failed redundant blocks are computed (see
proofin Appendix 11)

Based on Theorem 4, we develop the following algorithm. We enumerate all subsets of
redundant blocks of size d (recall that d is the number of failed data blocks). For each
subset, we establish a reduced decoding Tanner graph. A full-size matching in the Tan-
ner graph implies successful reconstruction. The reconstruction set includes the subset
of redundant blocks and all the data blocks required for reconstruction. The minimum
reconstruction set is discovered after enumerating through all the redundant subsets
(details shown in Figure 12).

The complexity of the algorithm is exponential in terms of n — & (the number of
redundant blocks, but this is typically not high in storage systems. For instance, the
example in Figure 6 contains 8 redundant blocks and 5 failed data blocks, thus there

are merely (g) = 56 subsets to evaluate.

6.2. On-Demand Reconstruction

Reconstructing a single failed data block requires a different set of blocks from re-
constructing all the failed blocks. An algorithm for finding the minimum on-demand
reconstruction set is described as follows.

Similar to the algorithm in Figure 12, we enumerate all subsets of redundant blocks
of size d (again, d is the number of failed data blocks). For each subset, we establish
a reduced decoding Tanner graph. If the graph contains a full-size matching, we run
a breadth-first search, starting from the target failed data block. When encountering
a data node in the Tanner graph, the search follows only the edge in the matching to
the corresponding redundant node. When encountering a redundant node, the search
follows all edges in the Tanner graph to all the data nodes, which have not been visited
before. Let D, denote the set of data nodes already visited; C, the set of redundant
nodes already visited; and D, the set of all data nodes connected to C,. The search
stops when C, becomes large enough to recover D, (i.e., |ID;| < |C,| and D. € D,).
(Refer to Figure 13 for details.)

The minimum on-demand reconstruction set is discovered after enumerating
through all the redundant subsets. The complexity is comparable to the algorithm
in Figure 12.

We now go through an example to reconstruct a single failed block d7 in Figure 6.
Since there are five failed data blocks, we enumerate all subsets of redundant blocks of
size 5. The reduced decoding Tanner graph corresponding to one particular redundant

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:22 C. Huang et al.

@ := null // queue used for the breadth first search
D, :=null, C, := null, D, := null
M := find a maximum matching
if |M] is less than failed data blocks then
return
: Q.enqueue(ng) // no: the target failed data block
while |Q| >0 do
n := @.dequeue
9: if n is a data node then
10: if n €D, then
11: repeat
12: D, :=D, + {n}
13: Q.enqueue(M|n]) // follow the edge in the matching
14: else
15: C,:=C,+{n}
16: // follow all edges to data nodes
17: for ng4 := data nodes connected to n do
18: if nqg ¢ D, then
19: Q.enqueue(ng)
20: if nqg € D. then
21: D.:=D. + {na}
22: if |D,| <|C,| and D, C D, then
23: last // found an access path for ng
24: o := |C,| + available data blocks connected to C,
25: overhead := min(overhead, o)
26: return

e A R ol e

Fig. 13. Minimum cost reconstruction read.

subset ({eq, €2, €3, €7, cg}) is depicted in Figure 6. To reconstruct block d7, the breadth-
first search starts from d7, goes to ¢7, then ds, c2, d4, and stops at ¢;. In the end, the
on-demand reconstruction set requires five blocks.

Each redundant subset might contain multiple full-size matchings, while the
breadth-first search only explores one of them. Nevertheless, the following theorem
states that this is sufficient to obtain the minimum on-demand reconstruction set.

THEOREM 5. Given a failure pattern and a redundant subset, the algorithm in
Figure 13 always yields the same C, even following different full-size matchings. (see
proofin Appendix 11I)

7. CONCLUSION

In this article, we design flexible schemes to explore the tradeoffs between storage
space and access efficiency in reliable data storage systems. We present two novel
classes of codes: basic pyramid codes (BPC) and generalized pyramid codes (GPC).
Both schemes require slightly more storage space than MDS codes, but significantly
improve the critical performance of read during failures and unavailability.

We establish a necessary matching condition to characterize the limit of failure re-
covery, that is, unless the matching condition is satisfied, a failure case is impossible
to recover. In addition, we define a maximally recoverable (MR) property. For all ERC
schemes holding the MR property, the matching condition becomes sufficient, that is,
all failure cases satisfying the matching condition are indeed recoverable. We show
that GPC is the first class of non-MDS schemes holding the MR property.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:23

APPENDIX I. Proof of Theorem 3

PROOF. We prove the theorem by induction on the construction algorithm (detailed
in Figure 9). The base case is to show that a GPC with single redundant block holds
the MR property. When the construction algorithm terminates, the generator matrix
G is of size (k+ 1) x k, where g1 through g;, form a identity matrix I, ;. Without loss of
generality, assume d;, is used to compute the single redundant block ¢;. Now consider
the case with one single failure of dj. Its reduced decoding Tanner graph contains
one edge, between d; and c¢1. This is a full-size matching and satisfies the matching
condition. We need to show this failure case is recoverable.

For the failure case, we examine the generator submatrix G! =
[g1,82, ,E8r_1, ng]T. Because g; through g,_; are from the identify matrix,
we know rank(Gsl\ng) = k — 1. Therefore, null(Gg\ng) is a single row vector and
must exist in the auxiliary matrix U. The construction algorithm ensures that g1
is not orthogonal to the row vector. Hence, G} is full-rank and the failure case is
recoverable.

Now assume a GPC with m — 1 (m = n — k) redundant blocks holds the MR property.
Next, we need to show that a GPC with m redundant blocks still holds the property.
We consider a case with m failures where the last redundant block ¢, is available.
Otherwise, we can drop c;,, which is also called puncturing the code, to include only
m — 1 redundant blocks. Based on the induction assumption, the MR property holds.

For the case with m failures, we need to show the following: if its reduced decoding
Tanner graph contains a full-size matching My of size m, the case is recoverable. This
is equivalent to showing that its generator submatrix G; is full-rank. Without loss of
generality, assume dy, is the failed data block connected to ¢, in M.

Now modify the failure case and create a new one, by setting d; as available and
¢, as failed. As argued before, we can drop ¢,, and consider the new case with m — 1
failures in the punctured code. Its reduced decoding Tanner graph contains a full-size
matching of size m—1 (simply take My and remove the edge between d;, and c;,). Based
on the induction assumption, this case is recoverable, and thus its generator submatrix
G/ is full-rank, that is, rank(G]) = k. Excluding gz, the row vector in the generator
matrix for d, we get rank(G/\gz) = k£ — 1. Therefore, null(G/\gp,) is a single row vector
and must exist in the auxiliary matrix U. Again, the construction algorithm ensures
it is not orthogonal to g.,,, the row vector in the generator matrix for ¢,,. Hence,
rank(G,\gr + {8r.1m}) = k. Now realize that excluding g;, from G/ and then including
gr1m yields exactly Gs — the generator submatrix for the case with m failures. Hence,
we have shown that G; is full-rank and the failure case is recoverable. The proof is
complete. O

APPENDIX Il. Proof of Theorem 4

PROOF. To recover d failed data blocks, at least d redundant blocks are needed.
Hence, the minimum reconstruction set includes at least d redundant blocks. Next, we
prove that including more than d redundant blocks will only increase the number of
blocks required.

Both failed data and redundant blocks need to be recovered. We first show that to
recover the d failed data blocks (denoted as D® = {d§, ---, d3}), the minimum recon-
struction set should include exactly d available redundant blocks. We prove the state-
ment by contradiction and assume the minimum reconstruction set in fact includes r
available redundant blocks (denoted as C* = {c{, - - -, ¢i'}) and r > d. Further, assume
the minimum reconstruction set includes s additional available data blocks (denoted
as D = {d{, ---, d¢}), which is shown to the right of the Tanner graph in Figure 14.
Since D¢ is recoverable, there must exist a full-size matching between D¢ and C?.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:24 C. Huang et al.

Fig. 14. Minimum cost recovery for failed data blocks.

Without loss of generality, assume the matching connects the first d nodes in C%, de-
noted as C§ = {c{, - - -, €%}. Then, find another reconstruction set, which includes only
redundant blocks in Cj. Of course, this reconstruction set needs to include additional
available data blocks (denoted as D} = {d{_ ;, ---, di}). Based on the assumption, the
recovery overhead of this reconstruction set is not minimum (the path includes Cg, D,
and DY). Hence, d +¢ > r +s (i.e., |C]| < [Df]). Note that each node in D{ is connected
to at least one node in C{j. Since D{ is not included in the minimum reconstruction set,
their values must have been canceled out by C{ during decoding. For this reason, each
node in C{ should connect to at least one node in D.

Now we consider only nodes in C{, D{, and edges between them. We claim that there
must exist a full-size matching between C{ and D{. Assuming this is not true, then,
the maximum matching size will be less than |C{|, as the size of the corresponding
minimum node cover N, (recall that maximum matching and minimum node covers
are equivalent in the bipartite graph). Denote C‘{' as those nodes in C¢ while not in N,
and denote D‘lz’ as those nodes in DY while also in N.. Based on the property of node
cover, each node in C‘i" is connected to at least one node in D‘{’ . On the other hand,

|IC{'| > IDY'| (based on the assumption). Now that nodes in C}’ do not connect to other
node in DY, at least one of them can be removed from the minimum access path without
affecting recoverability. This means that the cost of the minimum reconstruction set
can be reduced further, which is certainly a contradiction. Therefore, there must exist
a full-size matching between C{ and DY.

Without loss of generality, assume this matching connects C{ to the first r —d nodes
in D{ (denote them as D}"). We now consider a new failure case, which consists of D°,
D¢” and one more node from D} (say df). Using the redundant block in C* (C§ and C¢)
and the data blocks in D, it is clear that D® can be recovered. Next, we examine the
remaining Tanner graph. It contains a full-size matching, which consists of a matching
of size r — d between C{ and D{", together with an additional edge between df and at
least one node in C{j. Therefore, the rest of the failed data blocks can also be decoded. To
this end, we have demonstrated a case, where d + (r —d) + 1 = r + 1 failed data blocks
are recovered from only r redundant blocks. This creates a contradiction. Therefore,
the minimum reconstruction set should include exactly d available redundant blocks.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:25

DO\
dl
: Cy
dp
C,
dp+1 :
¢
v
d o
D, %

Fig. 15. Minimum cost recovery for failed redundant blocks.

In the second part of the proof, we show that to recover the failed redundant blocks,
the minimum reconstruction set includes every data block from which these redun-
dant blocks are originally computed. In other words, no redundant block can be com-
puted from the combination of data blocks and redundant blocks with less overhead.
Using a contradictory argument, we assume this claim is not true on one particu-
lar redundant block ¢q. Instead of computing from d data blocks (say dq, ---, dg),
assume c; can instead be computed with a minimum overhead from p data blocks
(denoted as Dy = {dy,---,d,}) together with (q — 1) redundant blocks (denoted as
Co = {eg, -+ ,¢c4}), where p + (g —1) < d (shown in Figure 15). Under this assumption,
there must ex1st a full-size matching between the rest (d — p) data blocks (denoted
as D7) and Cy. (Otherwise, we can examine the corresponding minimum node cover
and show that at least one node in Cy could be computed from Dy and the rest of the
blocks in Cy. This means ¢; can be computed even if this node is removed from Cy,
which further implies even less overhead to compute ¢1.) Hence, the maximum match-
ing size between D and Cy is (¢ — 1), and denote the (¢ — 1) matching nodes from D,
as D" = {dp;1,- - ,dp1q—1}. We now consider a particular failure case of g failed data
blocks, which include all the (¢ — 1) nodes in D;" and d. This failure case should be
recoverable using all the (¢ — 1) redundant blocks in Cy together with e¢;. This is be-
cause there exists a full-size matching in the corresponding Tanner graph (a matching
of size (g — 1) between D" and Cy, together with an edge between d; and ¢1). On the
other hand, ¢; can be computed from D and Cy, and thus is not an effective redundant
block (or ¢; is linear dependent on Dy and Cy). Hence, ¢ should be removed. To this
end, it is impossible to recover ¢ failed data blocks from (¢ — 1) redundant blocks. This
creates a contradiction. In summary, the proof is complete with the combination of the
above two parts. O

APPENDIX Ill. Proof of Theorem 5

PROOF. Itis easy to show that |D,| = |C,|, when the algorithm terminates. Now we
prove the theorem by contradiction. Assume the algorithm yields two different results
(denoted as D,,, C,, and D,,, Cy,, respectively) when following two different match-
ings. It is clear that D,, and D, share at least the target data block. Then, C,, and C,,
share at least one redundant block as well. Otherwise, failed data blocks in neither Dy,
nor D,, will not be recoverable, because they have to be decoded from redundant blocks
not in Gy, or Cy,, but there are fewer redundant blocks than failed data blocks. On the

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:26 C. Huang et al.

other hand, any data blocks, which are connected to the shared redundant block be-
tween C,, and C,,, have to be shared by D,, and D,,. Hence, following the same logic
and using induction argument, we can show that D,, and D,, can not overlap. Then,
one has to contain the other. Without loss of generality, assume D,, contains D,, (then
Cy, also contains C,,). If that’s the case, in the matching between D,, and C,,, at least
one node in both D,, and Dy, should not be connected to C,,. Based on the existence of
the full-size matching, at least one node in C,, should connect to a node in D,, while
not in Dy,. This implies the algorithm would not have terminated with D,, and C,,.
Hence, neither is it possible for D,, to contain D,,. In summary, this is a contradiction
and the proof is complete. O

ACKNOWLEDGMENTS

The authors would like to thanks Cha Zhang, Yunnan Wu and Philip A. Chou at Microsoft Research for very
helpful and inspiring discussions on various parts during this work.

REFERENCES

Abd-El-Malek, M., W. V. C. Ii, Cranor, C., Ganger, G. R., Hendricks, J., Klosterman, A. J., Mesnier, M.,
Prasad, M., Salmon, B., Sambasivan, R. R., Sinnamohideen, S., Strunk, J. D., Thereska, E., Wachs, M.,
and Wylie, J. J. 2005. Ursa minor: Versatile cluster-based storage. In Proceedings of USENIX Conference
on File and Storage Technologies.

Aguilera, M. K., Janakiraman, R., and Xu, L. 2005. Using erasure codes for storage in a distributed sys-
tem. In Proceedings of IEEE International Conference on Dependable Systems and Networks. IEEE, Los
Alamitos, CA.

Blahut, R. E. 2003. Algebraic Codes for Data Transmission. Cambridge University Press.

Blaum, M. and Roth, R. M. 1999. On lowest-density MDS codes. IEEE Trans. Inf. Theory.

Blaum, M., Brady, J., Bruck, J., and Menon, J. 1995. EVENODD: An efficient scheme for tolerating double
disk failures in RAID architectures. IEEE Trans.Computers.

Blomer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., and Zuckerman, D. 1995. An XOR-based erasure-
resilient coding scheme. Tech. rep. TR-95-048, ICSI, Berkeley, CA.

Borthakur, D., Schmidt, R., Vadali, R., Chen, S., and Kling, P. 2010. HDFS RAID. Hadoop User Group
Meeting.

Cadambe, V. R., Huang, C., and Li, J. 2011. Permutation code: Optimal exact-repair of a single failed node
in MDS code based distributed storage systems. In Proceedings of IEEE International Symposium on
Information Theory. IEEE, Los Alamitos, CA.

Cadambe, V. R., Huang, C., Li, J., and Mehrotra, S. 2011. Polynomial length MDS codes with optimal repair
in distributed storage. In Proceedings of the Asilomar Conference on Signals, Systems and Computers.

Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu, Y., Srivastav, S., Wu, J.,
Simitci, H., Haridas, J., Uddaraju, C., Khatri, H., Edwards, A., Bedekar, V., Mainali, S., Abbasi, R.,
Agarwal, A., Ul Haq, M. F., Ul Haq, M. 1., Bhardwaj, D., Dayanand, S., Adusumilli, A., McNett, M.,
Sankaran, S., Manivannan, K., and Rigas, L. 2011. Windows azure storage: A highly available cloud
storage service with strong consistency. In Proceedings of the ACM Symposium on Operating Systems
Principles. ACM, New York.

Chang, F., Ji, M., Leung, S.-T., Maccormick, J., Perl, S., and Zhang, L. 2002. Myriad: Cost-effective disaster
tolerance. In Proceedings of the USENIX Conference on File and Storage Technologies.

Chen, M., Huang, C., and Li, J. 2007. On the maximally recoverable property for multi-protection group
codes. In Proceedings of the IEEE International Symposium on Information Theory.

Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., and Patterson, D. A. 1994. RAID — High-performance,
reliable secondary storage. ACM Comput. Surv.

Chen, Y., Edler, J., Goldberg, A., Gottlieb, A., Sobti, S., and Yianilos, P. 1999. A prototype implementation of
archival intermemory. In Proceedings of the ACM Conference on Digital Libraries. ACM, New York.
Corbett, P., English, B., Goel, A., Grcanac, T., Kleiman, S., Leong, J., and Sankar, S. 2004. Row-diagonal
parity for double disk failure correction. In Proceedings of the USENIX Conference on File and Storage

Technologies.

Dimakis, A. G., Godfrey, P. B., Wu, Y., Wainwright, M., and Ramchandran, K. 2010. Network coding for

distributed storage systems. IEEE Trans. Inf. Theory.

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

Pyramid Codes: Flexible Schemes to Trade Space 3:27

Dingledine, R., Freedman, M. J., and Molnar, D. 2000. The free haven project: Distributed anonymous stor-
age service. In Proceedings of the Workshop on Design Issues in Anonymity and Unobservability.

Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P., Szczepkowski, J., Ungureanu,
C., and Welnicki, M. 2009. Hydrastor: A scalable secondary storage. In Proceedings of the USENIX
Conference on File and Storage Technologies.

Fikes, A. 2010. Storage architecture and challenges. Google Faculty Summit.

Ford, D., Labelle, F., Popovici, F. 1., Stokely, M., Truong, V.-A., Barroso, L., Grimes, C., and Quinlan, S.
2010. Availability in globally distributed storage systems. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation.

Gallager, R. G. 1963. Low-density parity-check codes. MIT Press, Cambridge, MA.

Gantenbein, D. 2012. A better way to store data. Microsoft Res. Featured Stories.
http://research.microsoft.com/en-us/news/features/erasurecoding-090512.aspx.

Ghemawat, S., Gobioff, H., and Leung, S.-T. 2003. The Google file system. In Proceedings of the ACM Sym-
posium on Operating Systems Principles. ACM, New York.

Gopalan, P., Huang, C., Simitci, H., and Yekhanin, S. 2011. On the locality of codeword symbols. In Proceed-
ings of the Allerton Conference on Communication, Control, and Computing.

Greenan, K. M., Li, X., and Wylie, J. J. 2010. Flat XOR-based erasure codes in storage systems: Construc-
tions, efficient recovery, and tradeoffs. In Proceedings of the IEEE Mass Storage Systems and Technolo-
gies. IEEE, Los Alamitos, CA.

Greenan, K. M., Long, D. E., Miller, E. L., Schwarz, T. J. E., and Wylie, J. J. 2008. A spin-up saved is energy
earned: Achieving power-efficient, erasure-coded storage. In Proceedings of the USENIX Workshop on
Hot Topics in System Dependability.

Greenan, K. M., Miller, E., and Wylie, J. J. 2008. Reliability of flat XOR-based erasure codes on hetero-
geneous devices. In Proceedings of the IEEE International Conference on Dependable Systems and
Networks.

Grolimund, D. 2007. P2P online storage. In Proceedings of the Web 2.0 Expo.

Haeberlen, A., Mislove, A., and Druschel, P. 2005. Glacier: Highly durable, decentralized storage despite
massive correlated failures. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation.

Hafner, J. L. 2005. Weaver codes: Highly fault tolerant erasure codes for storage systems. In Proceedings of
the USENIX Conference on File and Storage Technologies.

Hafner, J. L. and Rao, K. 2006. Notes on reliability models for non-MDS erasure codes. IBM Tech. rep.
RJ10391.

Hafner, J. L., Deenadhayalan, V. W., Rao, K., and Tomlin, J. A. 2005. Matrix methods for lost data recon-
struction in erasure codes. In Proceedings of the USENIX Conference on File and Storage Technologies.

Hamilton, J. 2007. An architecture for modular data centers. In Proceedings of the Conference on Innovative
Data Systems Research.

Hosekote, D. K., He, D., and Hafner, J. L. 2007. REO: A generic RAID engine and optimizer. In Proceedings
of the USENIX Conference on File and Storage Technologies.

Huang, C. and Xu, L. 2003. Fast software implementation of finite field operations. Tech. rep., Washington
University, St. Louis, MO.

Huang, C. and Xu, L. 2008. Star: An efficient coding scheme for correcting triple storage node failures. IEEE
Trans. Computers.

Huang, C., Chen, M., and Li, J. 2007. Pyramid codes: Flexible schemes to trade space for access efficiency in
reliable data storage systems. In Proceedings of the IEEE International Symposium on Network Com-
puting and Applications. IEEE, Los Alamitos, CA.

Huang, C., Li, J., and Chen, M. 2007. On optimizing XOR-based codes for fault-tolerant storage applications.
In Proceedings of the IEEE Information Theory Workshop. IEEE, Los Alamitos, CA.

Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P, Li, J., and Yekhanin, S. 2012. Erasure Coding
in Windows Azure Storage. In Proceedings of the USENIX Annual Technical Conference.

Khan, O., Burns, R., Plank, J., and Huang, C. 2011. In search of I/O-optimal recovery from disk failures. In
Proceedings of the USENIX Workshop on Hot Topics in Storage and File Systems.

Khan, O., Burns, R., Plank, J., Pierce, W., and Huang, C. 2012. Rethinking erasure codes for cloud file
systems: Minimizing I/O for recovery and degraded reads. In Proceedings of the USENIX Conference on
File and Storage Technologies.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. 2000. Oceanstore: An architecture for

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

3:28 C. Huang et al.

global-scale persistent storage. In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems.

Luby, M. G., Mitzenmacher, M., Shokrollahi, A., and Spielman, D. A. 2001. Efficient erasure correcting codes.
IEEE Trans. Inf. Theory.

Luo, J., Xu, L., and Plank, J. S. 2009. An efficient XOR-scheduling algorithm for erasure codes encoding. In
Proceedings of the IEEE International Conference on Dependable Systems and Networks.

MacWilliams, F. J. and Sloane, N. J. A. 1977. The Theory of Error Correcting Codes. North-Holland,
Amsterdam.

Maymounkov, P. and Mazieres, D. 2003. Rateless codes and big downloads. In Proceedings of the Interna-
tional Workshop on Peer-To-Peer Systems.

Papailiopoulos, D. S., Luo, J., Dimakis, A. G., Huang, C., and Li, J. 2012. Simple regenerating codes:
Network coding for cloud storage. In Proceedings of the IEEE INFOCOM Mini-Conference. IEEE, Los
Alamitos, CA.

Plank, J. S. 1997. A tutorial on reed-solomon coding for fault-tolerance in RAID-like systems. Softw. Pract.
Exper.

Plank, J. S. 2008. The RAID-6 liberation codes. In Proceedings of the USENIX Conference on File and
Storage Technologies.

Plank, J. S. and Xu, L. 2006. Optimizing cauchy reed-solomon codes for fault-tolerant network storage appli-
cations. In Proceedings of the IEEE International Symposium on Network Computing and Applications.

Reed, I. S. and Solomon, G. 1960. Polynomial codes over certain finite fields. J. Soc. Industrial Appl. Math.

Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., and Kubiatowicz, J. 2003. Pond: The oceanstore
prototype. In Proceedings of the USENIX Conference on File and Storage Technologies.

Rowstron, A. and Druschel, P. 2001. Storage management and caching in past, a large-scale, persistent
peer-to-peer storage utility. In Proceedings of the ACM Symposium on Operating Systems Principles.
ACM, New York.

Saito, Y., Frolund, S., Veitch, A., Merchant, A., and Spence, S. 2004. FAB: Building distributed enter-
prise disk arrays from commodity components. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems.

Schrijver, A. 2003. Combinatorial optimization, polyhedra and efficiency. Alg. Combinatorics.

Schroeder, B. and Gibson, G. A. 2007. Disk failures in the real world: What does an MTTF of 1,000,000
hours mean to you? In Proceedings of the USENIX Conference on File and Storage Technologies.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. 2010. The hadoop distributed file system. In Proceed-
ings of the IEEE Symposium on Massive Storage Systems and Technologies. IEEE, Los Alamitos, CA.

Suh, C. and Ramchandran, K. 2011. Exact regeneration codes for distributed storage repair using
interference alignment. IEEE Trans. Inf. Theory.

Tanner, R. M. 1981. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory.

Ungureanu, C., Atkin, B., Aranya, A., Gokhale, S., Rago, S., Calkowski, G., Dubnicki, C., and Bohra, A.
2010. Hydrafs: A high-throughput file system for the hydrastor content-addressable storage system. In
Proceedings of the USENIX Conference on File and Storage Technologies.

Wang, Z., Tamo, 1., and Bruck, J. 2011. On codes for optimal rebuilding access. Tech. rep. ETR111, Caltech.

Weatherspoon, H. and Kubiatowics, J. 2001. Erasure coding vs. replication: A quantitative comparison. In
Proceedings of the International Workshop on Peer-To-Peer Systems.

Welch, B., Unangst, M., Abbasi, Z., Gibson, G., Mueller, B., Small, J., Zelenka, J., and Zhou, B. 2008.
Scalable performance of the Panasas parallel file system. In Proceedings of the USENIX Conference on
File and Storage Technologies.

Wildani, A., Schwarz, T. J. E., Miller, E. L., and Long, D. E. 2009. Protecting against rare event failures
in archival systems. In Proceedings of the IEEE International Symposium on Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems.

Received October 2011; revised August 2012; accepted September 2012

ACM Transactions on Storage, Vol. 9, No. 1, Article 3, Publication date: March 2013.

